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Cross sections of the transition 3P, — 3P, for the atoms Zn, Cd, Hg upon collisions with
inert gas atoms are calculated. It is shown that the transitions between fine structure com-
ponents induced by nonadiabatic interaction are due to rotation of the molecule. A numerical
estimation of the cross sections is performed.

Es werden Wirkungsquerschnitte fiir den Ubergang 3Py — * P, fiir die Atome Zn, Cd, Hg
bei Stofen mit Edelgasatomen berechnet. Es wird gezeigt, daB die Uberginge zwischen Fein-
strulkturkomponenten, induziert durch nicht-adiabatische Wechselwirkung, durch Rotation
des Molekiils bewirkt werden. Es wird eine numerische Abschitzung der Wirkungsquerschnitte
durchgefiihrt.

Calcul des sections efficaces pour la transition 3P; — 3P, dans les atomes Zn, Cd, Hg par
collision avec des atomes de gaz rare. On montre que les transitions entre les composantes de
structure fine induites par interaction non adiabatique sont dues  Ia rotation de la molécule.
Estimation numérique des sections efficaces.

Introduection

Lately there have been performed some calculations of the transitions cross
sections between fine structure components of alkali metals in P-state for different
collision pairs (Na*-Na, Na*-Ar, K*-K, K*-Ar, Cs*-He etoc. [1-—3]). It has
been shown that the exchange forces play an important role in nonadiabatic
transition processes and cross sections close to the experimental ones were ob-
tained.

This paper considers the reactions of the type:

M*(3P,) + X(18,) - M*(3P,) + X(*8,) + 4e . (1)

The electron excitation energy Ae is transferred in kinetic energy of colliding
pairs.

M denotes any of the IT group P-state elements of the periodical table (Zn,
Cd, Hg). X is noble gas atom.

In the series Zn, Cd, Hg the spin-orbital splitting Ae changes from 190 em~! to

Ag

haV
is the effective interaction distance, far exceeds unity. This leads to exponentially
small transition probabilities.

1767 e, This splitting is so large that Massey parameter & = where 1/«
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The mechanism of the nonadiabatic transition in (1) will be shown to be diffe-
rent from that of transitions between components of the doublet of alkali metals.
A calculation of the transition cross section for the reaction (1) will be done in
the following.
The Hamiltonian of the rotating system with fixed internuclear distance is:
H=Hu+Hx+V+ Vso+ oLy + 82) + Vr (2)

where Hy and Hx are the Hamiltonians of atoms M and X.

V is the interaction between the atoms X and M.

Vso is the operator of the spin-orbital coupling.

L and § are the orbital and spin momenta of electrons. The z axis is taken to be
directed along the angular velocity vector w, whose direction is preserved in our
approximation. The last two terms are so-called nonadiabatic corrections, which
are excluded from the Schrodinger equation in the Born-Oppenheimer approxima-
tion. The first of two terms in (2) is due to the rotation of the molecular axis and
the last is due to the radial movement of the colliding atomic pair. From the selec-
tion rules for electronic transitions of a quasimolecule it can easily be found that
only the term w(L; + Sz) can induce transitions 4Q = + 1.

The scheme of calculation is as follows.

Taking as a basis the eigenfunctions of Hamiltonian [1]:

Hy=Hx + Hx + Vso 3)
we determine the eigenvalues and eigenfunctions of the adiabatic Hamiltonians:
H =H,+ V. (4)

These molecular eigenfunctions are used to calculate the transition probability.

The Caleulation of Wave Functions and Quasimolecule Energy Terms
for the Pair M*-X

The eigenfunctions of the operator H, are:
. 1
pr=]j=0,m=0> = 73 (W11 X1 + Y1 X1 — Vo X10)

. 1
Pa = l j=4m=0> = 7 (W11 21,1 — P11 A1)

. 1
@3 = l i=lm=1> = 72 (¥1,1 %1.0 — V1.0 X1,1)

. 1
Py = l j=1m=—1> =— 72 (¥1,-1 X1,0 = P10 X1,-1)
. 2 1
@5 = I j=2,m=0> = V;’lf'l,o Y10+ 1/%(’/’1,-—1 T11 T Y11 X1-1)
. T
Pe = | j=2m=1> = 1/‘2— (®1,1 21,0 + V1,0 X11) (5)

. 1
Y7 = l j=2,m=—1> = l/; (¥1,-1 X1,0 T P1,0 Z1,-1)
¢9=1j=2,m1~=2> = P1,1 X11

Pg = ( J=2,mj=-2> =9, 11,1
where ¥y x is the spin-function with 8§ = 1, S, = k.

* It is assumed that the derivation from L-S type coupling can be neglected.
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Of the off-diagonal elements of the matrix H, in the ¢; basis only H,; and H,
are different from zero. We therefore form the following linear combinations:
Y, =0 o+ b3 @5 Wy = bs @3+ bg @5 Vs =9, (6)
V=0t + b3 s V= b5+ b5 V=95 -

The energies corresponding to functions ¥; and coefficients 47, are found by con-
ventional methods. Denoting:

Ho = (y1,0 |H l Vo) 3 Hn =y, | H l#’1,1> (M)
we can write the adiabatic energies of the Hamiltonian H as:
Ho+H 34 1
By= 20 4 20 4 94— 3(Hn— Ho) de+ (Hn— He)?
Ho+ H: 34 1
B,= —%1 -2—8— - -2—V9A82~2(Hn—H0)A8+(H:ft—Ho‘)2
Ho+ H 1 :
Byy= =" 4 24s & [AAS+ (Hu— Ho)® (8)
E,= Hn+ A¢; Eo=Hgn + 3¢ .

In general the functions Ho and Hgr change non-monotonously with the inter-
nuclear distance R. When R is large enough the main contribution is due to polari-
zation, so that Ho < Hm < 0. At small distances the exchange interaction of the
pair M*-X leads to repulsion, so that Ho > Hsx > 0. For the two extreme cases
the correlation of energy terms is shown in Fig. 1, 2.

From Figs. 1 and 2 it is seen that the transition 2 = 1 —£Q = 0 followes quite
different mechanisms in the two cases. If Hn < Ho < 0 the rotation will induce
transitions between the energy terms 1 and 0~. Ifin this case Ho — Hn > As these
terms go to the same limiting term 3 2%,

If Hg > Hn > O the rotation causes transitions between energy terms of the
same symmetry. The distance between such terms, however, depends only slightly
on R. Between the converging terms 0+ and 0~ there are no transitions, because the

J'=2 (% +745'a)

ST (B'S)
j=0 (3/%'/“750)

I, ggfz

2 = . 2, 7
11 =7 =2 (B+5,)
- 2=0 J/ 27 Y0
°’n, L=0"

=7 (%A +78,)

v
i

5 ____Q;;_‘—d——-—ﬁo (5 +'8,)

Fig. 2. Electronic Terms of a System M* —X for the case Ho < Hz <0
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“parity’’ (-+) and (—) (different symmetry with respect to the reflection in the
rotation plane) remains a good quantum number even when rotation is taken
into account. Here we shall consider only the second case. The choise of this case
in supported by the fact that experimental cross sections for the processes (1)
are found to be very small [4].

The splitting between the energy terms 1 and 0~ in case Ho > Hx > 0is the
following:

1 ,—
AE:%“’—%ngsz—l—zﬂo’ﬁs—i—ﬂo'z—?]/4A62+HO'2 9

The wave functions of O and 1 states are:
Y,(07) = b o+ b§ Ps (10)

Y,1) = bs Ps + bs Pe
where

r_oily 1Ho+34s e A0y 2 de s
L) (942 + 2Hods + Ho®' | 7% )2 (4 Ae? + Ho?'a

The matrix element V,, of the transition operator is:

Vol B) = ¥y | Ly + 8z) | P

. 3w %HO‘-F 3 4e i 24¢ "/ (11)
o 2]/6 (94e2 + 2 Ho Ae + H o%)'s (Ho? + 4 A%z
where w = —— and u is the relative angular momentum, which remains constant.

2u R2
As the sphttmg between the energy terms 1 and 0~ is large and the perturba-
tion is small (the frequency of rotation w is small) one can calculate the transition
probability to the first order ofthe perturbation theory. An additional simplification
emerges from the application of semiclassical approximation after which we intro-
duce a certain trajectory R = R(T).
The formula for transition probability is:

P =

% T VaulR) exp [% fAE(t’) dt')] dt ‘2 (12)

Let us now make use of the fact that the exchange interaction decreases appro-
ximately exponentially. To find singularity points of the integrand one can take
Ho = A exp (—« R), where the dependence of 4 upon R can be neglected as
compared with the exponential function. Introducting the variable u — (R — R,),
where A(R,) exp (—« R,) = Ae, the integral in the formula (12) is:

400
_3 @Ae du du
= = | @) hw) fym exp j ABw) %) 2 1)
where Vg is the radial velocity Vg = Voo ( _ %22 ) I
0
o 2 1/, . _ [ 3+%6Xp(—-u) 1,
fl(u) ——[1 — m] :fz(u) = Li — 0+ 2exp(—u)+exp(—2u)]lls}

AB(u) = 1+ Y9+ exp(—2u) +2exp(—u) — 4+ exp(—2u) (14)

Integral I is calculated by the Landau method — by displacing the path of inte-
gration to the complex plane to make the integrand exponentially small.
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The singularity points (namely the polar points of branching) are found from
the equations:

9+ 2exp (—u) + exp (—2u) = Oroots u = y; + 2kmi; u =y, + 2k ni (15)
4+ exp(—2u)=20 roots u = pg =+ 2k wi; u = p, + 2k .

The main contributions to the integral are due to such parts of the contour who
are near the branching points u; and u,, since exponential functions in integrand
decrease rapidly when one moves away from p, and pug.

Because of that we take into account only the contributions from the singularity
points u; and g, which are nearest to the real axis. The integration contour is
given in Fig. 3. The next two singularity points give a smaller contribution to the
integral. In such way we have obtained two integrals along the contours ; and
Cy, which are transformed into the I'-functions.

_ 3w exp(—ix0) J‘ exp [M(A1+ By u— By ys)]
L= 2/6 24 sV g (u—ug) du (16)
_ VBol'd)  expliAd;—a0-=/4-3p/4)]
T 2u(A | By |l aV ’
where
A= ;g =1,3; 4, = 1,8 + 4s;

2V
?’1 = 0527 Bl = 374 - 0:87’; Il = I Il I GXP (/hpl)
w, exp (—24 Im A)

| I, 2= 0.1 2T 7

For I, we get:
g By(u
1= 125505 2 xp i34, — o) j R [IBC 1] g,

. )
'—“*31 1715 (r;/‘ e Xp[ 24, —@50+»—% —ﬂ} (47)

Ay =02+ 47i; By=23+22; y,—=08; S, =05.
Imt)

T )
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Fig. 3. The Integration Contour in Eq. (13)
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Thus for the transition probability we find :
P=|1I [2—i- |I B2 I || I;] cos (y; — )
P=01——fimy " V”, -[exp (—2A Im A,) + 8exp (—24Im A,) + (18)
+ 6exp[—A Im(d;, + A,)] cos (24 — 0,3 7)]; Im A, =40; ImA,=47

& = 2A-Massay parameter.

The third term in this formula is a rapidly oscillating interferential term. Its
existence is connected with the probability correlation from two ranges of transi-
tion.

The corresponding cross-section is:

o =2x [ P(Vg) odp (19)
o=umn R2 P(Vg) R, is the same for all the terms
— 60 + gl £ o - _exp (24 Im 4y)
o =0+ ol + o o®=01xn 5o P (20)
exp[—AIm(4, + Az)] exp(—21ImA,)

d =0,6n 08 (24 — 0,37); 6 = 0,87

202 A% 202 A

Here we disregard the slight change of Vg at the points 4, and us. This formula
should be averaged according to a maxwellian distribution. The integration is
made by means of stationary phase method. The computation gives:

3 exp (—371>2/3

o = R i 1_ g5 EXP (37,

o s

18% ) cos (0,47, — 0,37) 21)

2415]/’——” 2.4/¢ 2,24 ‘/*‘
v L KT V8~ 4 2KT

The third term in the Eq. (20) has an oscillating character that seems to be due to
the method of “modified quantum number”” which has been used in the computa-
tion of integral (19) [5]. In this approximation the principle of detailed balancing
is not fulfilled. The corresponding correction, however, can be easily introduced
into the final expression [6].

where

The Estimation of Cross Sections
T =103K° a=14
1. Zn(3P;) + Ar(*8,) —~Zn(3Py) + Ar(1S,) + Ae (190 em-1)
71 = 3,7, Ve =43; vs =40
c=1,2-10"1% cm? (22)
2. Cd(3P;) + Ar(*8y) — Cd(®*P,) + Ar(2S,) + Ae (542 em1)
= 9,6; Yo =9,7; vs = 9,65
o=4,5-10"% ¢m? (23)
3. Hg(®Py) + Ar(*S,) - Hg(®Py) + Ar(1S,) + e (1767 cm™1)
0=1,5-10"3¢cm?. (24)
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Concluding Remarks

The computation are performed of the non-elastic cross section for transitions
between fine structure components of second group excited atoms. The transitions
are induced by non-adiabatic interaction with the atoms of inert gas. The nu-
merical evaluation of cross section in the semiclassical approximation is carried
out. The corresponding quantum problem can be solved by means of a similar
method. However, due to the lack of experimental data, this correction seems to be
of no use now. Although the cross sections are small, it should be noted that they
seem to be measurable. The minimum cross section measured at present is of the
order of ~10-2 cm? (for Cs + He pairs).

The authors are indebted to Dr. E. E. Nirrrin for very valuable discussions.
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