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Cross sections of the transition 8P 1 -+ 3P 0 for the atoms Zn, Cd, Hg upon collisions with 
inert gas atoms are calculated. I t  is shown that the transitions between fine structure com- 
ponents induced by nonadiabatie interaction are due to rotation of the molecule. A numerical 
estimation of the cross sections is performed. 

Es werden Wirkungsquersehnitte fiir den t3bergang aP 1 -+ aP o fiir die Atome Zn, Cd, Hg 
bei StSI~en mit Edelgasatomen berechnet. Es wird gezeigt, dal~ die r zwischen Fein- 
strukturkomponenten, induziert dureh nicht-adiabatisehe Wechselwirkung, dutch Rotation 
des Molekfils bewirkt werden. Es wird eine numerische Absehgtzung din" Wirkungsquersehnitte 
durchgeffihrt. 

Calcul des sections efficaces pour la transition aP 1 ~ aP0 dans les atomes Zn, Cd, Hg par 
collision avec des atomes de gaz rare. On montre que les transitions entre les composantes de 
structure fine induites par interaction non adiabatique sont dues ~ la rotation de la mol6cule. 
Estimation num6rique des sections effieaces. 

Introduction 

L a t e l y  there  have  been pe r fo rmed  some calcula t ions  of  the  t rans i t ions  cross 
sect ions be tween  fine s t ruc ture  componen t s  of  a lkal i  meta l s  in P - s t a t e  for different  
collision pai rs  (Na*-Na ,  N a * - A r ,  K * - K ,  K * - A r ,  Cs*-He  etc. [1--3]) .  I t  has  
been shown t h a t  the  exchange  forces p l a y  an  i m p o r t a n t  role in nonad iaba t i c  
t r ans i t ion  processes and  cross sect ions close to  the  exper imen ta l  ones were ob- 

ta ined .  
This  p a p e r  considers t he  reac t ions  of  the  t y p e  : 

~*(8P1 ) + X(i~.~0) -+ ~V~*(3P0) + X(l~_~0) + ,48. ( l )  

The  e lec t ron exc i t a t ion  energy Ae is t r ans fe r red  in k inet ic  energy of  coll iding 

pairs.  
denotes  a n y  of  the  I I  group P - s t a t e  e lements  of  the  per iodical  t ab le  (Zn, 

Cd, t tg) .  X is noble  gas a tom.  
I n  the  series Zn, Cd, H g  the  sp in .o rb i t a l  sp l i t t ing  zJe changes f rom 190 cm -1 to  

__ As where l/a: 1767 em -1. This  sp l i t t ing  is so large t h a t  Massey p a r a m e t e r  --  haV 

is the  effective in te rac t ion  dis tance,  far  exceeds un i ty .  This  leads  to  exponen t i a l ly  
small  t r ans i t ion  probabi l i t ies .  
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The mechanism of the nonadiabatie transition in (1) will be shown to be diffe- 
rent from tha t  of transitions between components of the doublet of alkali metals. 

A calculation of the transition cross section for the reaction (l) will be done in 
the following. 

The Hamfltonian of the rotating system with fixed internuclear distance is : 

H = H~ + Hx  + V + Vso + ~o(Lz + S~) + VR (2) 

where HM and Hx are the I-Iamiltonians of atoms IVf and X. 
V is the interaction between the atoms X and IV[. 
Vso is the operator of the spin-orbital coupling. 
L and S are the orbital and spin momenta of electrons. The x axis is taken to be 

directed along the angular velocity vector w, whose direction is preserved in our 
approximation. The last two terms are so-called nonadiabatie corrections, which 
are excluded from the Sehrodinger equation in lhe Born-Oppenheimer approxima- 
tion. The first of two terms in (2) is due to the rotation of the molecular axis and 
the last is due to the radial movement  of the colliding atomic pair. From the selec- 
tion rules for electronic transitions of a quasimolecule it can easily be found tha t  
only the te rm ~o(Lx -t- Sx) can induce transitions Af2 = :L i. 

The scheme of calculation is as follows. 
Taking as a basis the eigenfunetions of Hamiltonian [i] : 

H o = H ~ + H x +  Vso (3) 

we determine the eigenvalues and eigenfunctions of the adiabatic Hamiltonians : 

H 1 = H e + V.  (4) 

These molecular eigenfunctions are used to calculate the transition probability. 

991 = [ j = 0 , / j = 0 >  

992-~" [j= l, mi=O> 

9 9 z = [ J : l ,  m J = l >  

994= [ ] =  l,  m j = - l >  

995 = l i =  2, mj = O > 

9 9 ~ = l ] = 2 ,  m j = l >  

q 9 7 = [ ] = 2 ,  m j = - i >  

990= [ ] =  2, m j = 2 >  

99s = I ] =  
where ZI,~ is the 

* I t  is assumed 

The Calculation of Wave Functions and Quasimoleeule Energy Terms 
for the Pair 1H~.X 

The eigenfunctions of the operator H o are: 
l 

: V-~ (~)1,--1 Z1,1 ~- ~/)1,1 Z1,-1 - ~)1,0 ~1,0) 

(~)1,1 Z1,-1 -- ~/)1,-1 Z1,1) 

l 
= y~ (~31,1 ~1,0 -- ~/)1,0 Z1,1) 

1 
= -- ~ (~01,--1 Z1,0 -- ~/)1,0 Z1,-1) 

= ~32~ ~/)1,0 Zl,O + - ~ 6  (~)1,_1Zl, 1 t  + '/Pl,1Zl,-1) 

~--- ~ (~/)1,1Zl,0 -4- ~/)1,0 Zl,I) 

= 21,o + ~1,o Z1,-1)  

= Yh,1 Z1,1 
2,  mj  = - - 2  > = %Pl,-1 gl,-1 
spin-function with S = l, Sz = k. 

that the derivation from L-S type coupling can be neglected. 

(5) 
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Of t he  off-diagonal  e lements  of  t he  m a t r i x  H 1 in the  9~ basis on ly  H15 and  Ha6 
are  different  f rom zero. W e  therefore  form the  following l inear  combina t ions :  

H1 = 51 F1 + b~ F5 H a = b~ Fa + b~ F6 ~.~ = F2 (6) 

= o = ba Fa + b62 ~~ }/]6 = ~~ 

The  energies cor responding to  funct ions  g]i and  coefficients b~ are found  b y  con- 
ven t iona l  methods .  Deno t ing :  

H ~  - (V, ,o  I / / [  Wi,o> ; H~r = <~ , , ,  I H I Y',,l> (7) 

we can wri te  t he  ad iaba t i c  energies of  the  H a m i l t o n i a n  H as:  

E,= Ha+H=2 + ~ - -  + 1 ]/9Ae2_ 2(H~r_ Ha) 2e + (H:,r A He)~ 

E~-- Ha + + 3A~2 2J W9A~ " 2(Her- tta) de + (Hxr- Ha)2 

Ea 4 = H a  + Hzr 1 - ' 9. ' 2 + 2Ae + -~]/4Ae~+(H~-Ha) (8) 

E ~ =  H z r + A e ;  Ea=H~ + 3As .  

I n  genera l  t he  funct ions  H a  and  Her change non-mono tonous ly  wi th  t he  inter-  
nuclear  d i s tance  R. W h e n  R is large enough the  ma in  con t r ibu t ion  is due to  polar i-  
zat ion,  so t h a t  H a  < HTr < 0. A t  smal l  d is tances  the  exchange  in t e rac t ion  of  t he  
pa i r  M * - X  leads  to  repuls ion,  so t h a t  H ~  > Her > 0. l%r  the  two ex t r eme  cases 
t he  corre la t ion  of  energy  t e rms  is shown in Fig.  l ,  2. 

F r o m  ]~igs. i and  2 i t  is seen t h a t  t he  t r ans i t i on  f2 = i -~ ~ = 0 followes qui te  
different  mechan i sms  in the  two cases. I f  Her < H a  < 0 t he  ro t a t i on  will induce 
t rans i t ions  be tween  the  energy t e r m s  I and  0-.  I f  in  th is  ease H a  - Her > zJe these  
t e rms  go to  t he  same l imi t ing  t e r m  a X+. 

I f  H a  > Her > 0 t he  ro t a t i on  causes t rans i t ions  be tween  energy t e rms  of  t h e  
same symmet ry .  The  d i s tance  be tween  such terms,  however ,  depends  on ly  s l ight ly  
on R. Be tween  the  converging t e rms  0 + and  0 -  the re  are  no t rans i t ions ,  because the  

a v ~ =o-  

i =. & + .(2=2 

3/-~, __ -(2 =1 ,j=, (@, +'so) 
a/*r0-- ~a=a- .j=o (3Po+'so) 

Fig. J. Eleetronio Terms of a System M* -X for {he ease/-/~ ~//= < 0 

~r/2 3"2=2 

f 2 = O -  

~Ho ~ = 0  § 

j=l r 

.(2=0- 
Fig. 2. Electronic Terms of a System M* - X  for the case Ha < H= < 0 



Cross Sections for Transitions between Fine Structure Components 337 

"par i ty"  (+ )  and (--)  (different symmetry  with respect to the reflection in the 
rotation plane) remains a good quantum number even when rotation is taken 
into account. Here we shall consider only the second case. The ehoise of this ease 
in supported by  the fact tha t  experimental cross sections for the processes (t) 
are found to be very small [4]. 

The splitting between the energy terms I and 0-  in case Ha >> H~ > 0 is the 
folloMng: 

Ae 
_~ I V4 As  ~ + H ( ~  ~ (9) A E =  ~ -  + V 9 A s ~ +  2 H ~ A e + H ~ 2  -- y 

The wave functions of 0 and I states are : 

~ ( 0 - )  = b~ ~z + b~ ~5 (10) 
= b~ ~3 + b~ ~6 

where 

b~=~ 1-(9~+2H~A,+H~)~/~ ;b~=~ I (4a~)~/,j 
The matr ix  element V~4 of the transition operator is : 

3w [ �89 3As ]1/2 [ i - 2A~ ]1/$ 
- -  2V-6 J" -- (9As ~ + 2 HaAs + H a2)I/~ (Ha~ + 4As2)I/~ (11) 

where w = 2 ~  and u is the relative angular momentum,  which remains constant. 

As the splitting between the energy terms t and 0- is large and the perturba- 
tion is small (the frequency of rotation ~o is smM1) one can calculate the transition 
probabili ty to the first order of the perturbationtheory.  An additional simplification 
emerges from the application of semiclassical approximation after which we intro- 
duce a certain t ra jec tory /~  = R(T) .  

The formula for transition probability is: 
+ c o  t 

--O0 
Let us now make use of the fact tha t  the exchange interaction decreases appro- 

ximately exponentiMly. To find singularity points of the integrand one can take 
H a  = A exp (-cr  R), where the dependence of A upon R can be neglected as 
compared with the exponential function. Introducting the variable u = or - Ro) , 
where A(Ro) exp (--o~ Ro) = As, the integral in the formula (12) is: 

+ c o  u 

3 f co(u)[~(u)/~(u) ex [iAe CAE,u, ,  du'] du (13) I =  

- - 0 0  ( e 'Io where VR is the radial velocity VR = Vcx~ I - R~] 

[4 + exp( - 2u)]~/,] ; ]2(~) = [9 + 2 exp( - u) + exp( - 2u)]~/= 

AE(u)  = i + V 9 §  + 2 e x p ( - - u ~  -- V 4 + e x p ( - 2 u )  (14) 

Integral  I is calculated by the Landau method - -  by displacing the pa th  of inte- 
gration to the complex plane to make the integrand exponentially small. 
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The singulari ty points (namely the polar points  of  branching) are found f rom 
the equations:  

9 A- 2 exp ( - u )  § exp ( - 2 u )  = 0 roots u = # l  • 2k 0ri; u = / %  • 2k zri (15) 

4 § exp ( - 2 u )  = 0 roots u = #a • 2k ~i ;  u = #4 ~: 2k ~ i .  

The main  contributions to  the integral are due to  such parts  of  the contour  who 
are near  the branching points #~ a n d / %  since exponential  functions in integrand 
decrease rapidly  when one moves away  from/t~ and/%. 

Because of t ha t  we take  into account  only the contributions f rom the singularity 
points #~ and tt3 which are nearest  to  the real axis. The integrat ion contour  is 
given in Fig. 3. The next  two singulari ty points give a smaller contr ibution to the 
integral. I n  such wa y  we have obtained two integrals along the contours C~ and 
C 2, which are t ransformed into the  F-functions.  

I = 11 -j- I~ 
3m exp(-i~x0) ~ exp[i~(Al+Blu-Bl~a)] 

I~ = ~V6 2 ~/' ~ V a~ (u-~3)~/, 
du (t6) 

V3 (9 F(a)  exp [i(2A 1 - aO - zt/4 - 37J4)] . 

2~/,(2 [ B~ ])'h aV ' 
where 

= 2V~-~ ; ~o = 1,3; A 1 = 1,8 -f- 4i; 

?1 = 0 , 2 ;  B 1 = 3,4 - 0,8i; 11 = I 1 i  ]exp  (i~fi) 

[ I  1 I u = 0,1 w2exp(-2;tlmAz) 
o~ Y ~ 2 h  , ~ l  = 1 , 8  2 - 1 , 1  - -  z ~ / 4 .  

l~or I ,  we get:  
C 31/4 O) 
| _ _  _ _  _ _  1~ = 1,25 ~ ~I7  exp [i(2A~ -- rio)] 3 exp [iZB2(u --/za)J du 
e2 (u --/%)1h 

-- (,~iB~I)% ; - v e x p  - 2 A ~ - i f i o +  4 - -  

A~ = 0,2 -t- 4,7i; B 2 = 2,3 A- 2,2i; ?2 = 0,8; 

/m(U) 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 
I 

/ / 

I i 
-Zn3 -lag 

j /  

\ \  

(i7) 

fie = 0 ,5 .  

Fig. 3. The Integration Contour in Eq. (13) 
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Thus  for the transi t ion probabil i ty we find: 

P = [ I1 ? + Z xs + 2 [ I i  l{ zs { oos (vl - w )  
0) 2 

P = 0, i  a~ V~ A'~, [exp (--2~ I m  A1) + 8 exp (--2~ I m  As)  + (18) 

+ 6 e x p [ - A I m ( A  l + As)] cos (2A - 0,3 ~)]; I m  A 1 = 4 , 0 ;  I m  A s = 4 , 7  

= 2~,Massay parameter .  
The th i rd  te rm in this formula is a rapidly oscillating interfercntial term. I t s  

existence is connected with the probabil i ty correlation f rom two ranges of  transi- 
tion. 

The corresponding cross-section is: 

a = 2Jr[ P ( V R )  ~dq (19) 

a = ~ R~o P(V~) R o is the same for all the terms 

0 " = 0 " 0 + 0 " 1 + 0 " ~  G0 = 0 , t  7~ e x p ( - - 2 A I m A 1 )  (20) 
2a~ ~3/2 

aol = 0,6 ~r exp [--A Im(A 1 + A2) j exp( --  2~[m A2) 
2 ~  FA - cos (2~ -- 0,3 ~); ~1 = 0,8~r 2~ 2 2h  

Here we disregard the slight change of Vn at the points #1 and/~a. This formula 
should be averaged according to a maxwellian distribution. The integrat ion is 
made by  means of  s ta t ionary  phase method.  The computa t ion  gives: 

~o = 3 e x p  (--371)U3 ; (r I ~ 2 5  e x p  (--3?2~/3) 
a 2 ?12/a a ~ ?2~/a 

601 : -  J 8  e x p  ( - - 3  ?at/a) ,~2ya~/~ cos (0,47a ~1~ -- 0,3~) (2i) 

where 

2As # ; 7 2 - -  - -  ; ?~ - -  - 

71 = ~ -  a ~ 2 K T  

The th i rd  term in the Eq.  (20) has an oscillating character  t ha t  seems to  be due to  
the method  of  "modified quan tum num be r "  which has been used in the  computa-  
t ion of  integral (19) [5]. I n  this approximat ion the  principle of  detailed balancing 
is no t  fulfilled. The corresponding correction, however, can be easily introduced 
into the  final expression [6]. 

T h e  E s t i m a t i o n  o f  Cross Sec t ions  

T = l03  K ~ c, = 1,4 

I. Zn(3P1) + Ar(1So) ~ Zn(SPo) + Ar(ISo) + As (t90 cm -1) 

71 = 3,7; 7~ = 4,3; ?a = 4,0 

a = 1,2- l0  -1~ cm ~ 

2. Cd(aP1) + Ar(1So) ~ Cd(aPo) + Ar(1So) + As (542 cm -1) 

71 = 9,6; ?~ = 9,7; ?a = 9,65 

a = 4,5. l0  -~a cm s 

3. Hg(aP1) + Ar(1S0) ~ Hg(aPo) + Ar(1S0) + zJr (t767 cm -~) 

G ~--- 1 :5"  10  -81 c m  2 . 

(22) 

(23)  

(24) 
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Concluding Remarks 

The c o m p u t a t i o n  are  pe r fo rmed  of  the  non-elas t ic  cross sect ion for  t r ans i t ions  
be tween  fine s t ruc tu re  componen t s  of  second group exc i ted  atoms.  The t rans i t ions  
are  induced  b y  non-ad iaba t i c  in te rac t ion  wi th  the  a toms  of  iner t  gas. The nu- 
mer ica l  eva lua t ion  of  cross sect ion in the  semiclassical  a p p r o x i m a t i o n  is carr ied 
out.  The corresponding q u a n t u m  prob lem can be solved b y  means  of  a s imilar  
method .  However ,  due to  the  lack  of  expe r imen ta l  da ta ,  th is  correct ion seems to be 
of  no use now. A l though  the  cross sections are  small ,  i t  should  be no ted  t h a t  t h e y  
seem to  be measurable .  The  minimum cross sect ion measured  a t  present  is of  the  
order  of--~10 -21 cm 2 (for Cs + H e  pairs).  

The authors are indebted to Dr. E. E. N~xwr~ for very valuable discussions. 
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